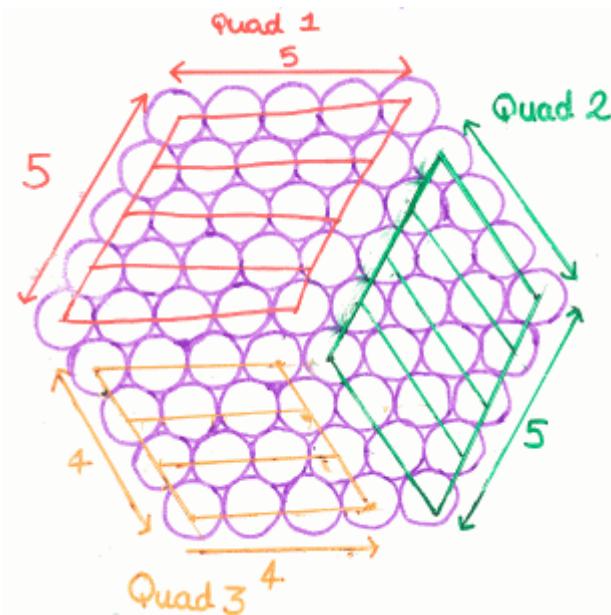


Here is some work done on the problem 'Steel Cables' by Group 1. Can you explain their reasoning?



Size	Quad 1	Quad 2	Quad 3	T
2	2×2	2×1	1×1	7
3	3×3	3×2	2×2	19
4	4×4	4×3	3×3	37
5	5×5	4×5	4×4	61
6	6×6	6×5	5×5	91
10	10×10	10×9	9×9	271
n	$n \times n$	$n \times (n-1)$	$(n-1)^2$?

n^2 ↑ $n^2 - n$ ↑ $n^2 - 2n + 1$ ↑

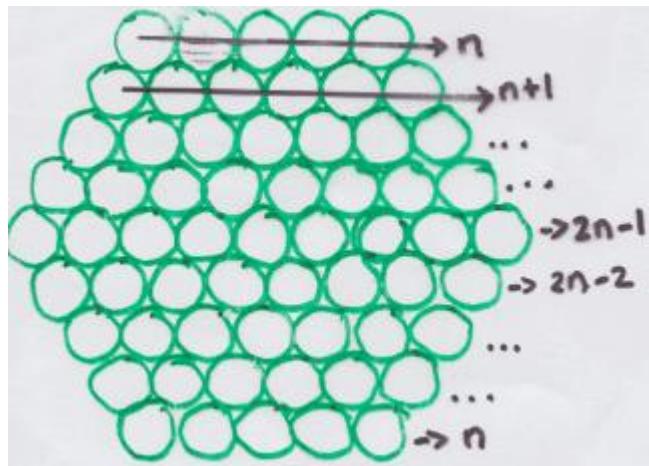
$$T = n^2 + n^2 - n + n^2 - 2n + 1$$

$$\Rightarrow 3n^2 - 3n + 1$$

or

$$3n(n-1) + 1$$

Here is some work done on the problem 'Steel Cables' by Group 2. Can you explain their reasoning?



To find the sum you must add up

all the rows:

$$n + 2n-1 = 3n-1$$

$$n+1 + 2n-2 = 3n-1$$

$$n+2 + 2n-3 = 3n-1$$

$$\vdots \quad \vdots \quad = " "$$

$$2n-1 + n = 3n-1$$

$3n-1$ is the sum of two of the rows so there are n pairs of $3n-1$:

$$n(3n-1)$$

BUT we repeated $2n-1$.
When there's only one of this,
so take away the extra $2n-1$

$$n(3n-1) - 2n-1$$

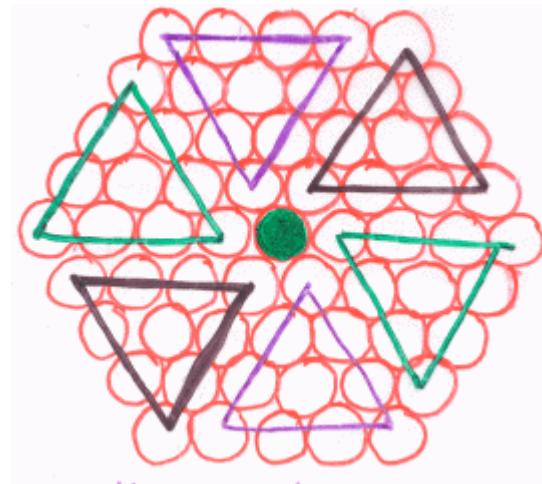
Simplify it:

$$= 3n^2 - n - (2n-1)$$

$$= 3n^2 - n - 2n + 1$$

$$= 3n(n-1) + 1$$

Here is some work done on the problem 'Steel Cables' by Group 3. Can you explain their reasoning?



We noticed there are always 6 triangles in a hexagon - all equal

The areas of these triangles are triangular numbers
 The formula for triangular no = $\frac{n(n+1)}{2}$

However, the side of one of these triangles is not 'n' but one less so

the length of the side of the triangle) $n-1$

Substitute this into the formula instead of n :

$$\frac{(n-1)(n-1+1)}{2} = \frac{n(n-1)}{2}$$

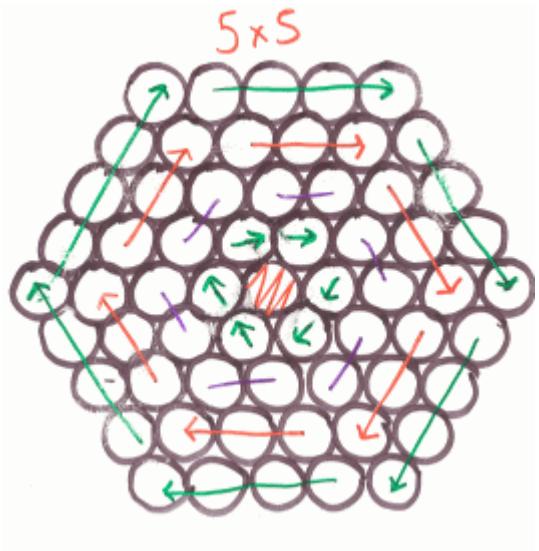
We know there are always 6 triangles in a hexagon so the total area will be

6 x triangle area + the extra one in the centre

$$6 \left(\frac{n(n-1)}{2} \right) + 1$$

$$\cancel{6} \left(\frac{n(n-1)}{2} \right) + 1 = 3n(n-1) + 1$$

Here is some work done on the problem 'Steel Cables' by Group 4. Can you explain their reasoning?



$$\begin{array}{l}
 1 \\
 6 \times 1 \\
 6 \times 2 \\
 6 \times 3 \\
 6 \times 4 \\
 \dots \\
 6(n-1)
 \end{array}$$

We noticed that the area of each ring followed this pattern
 To find the total we needed to add the areas of each ring

$$\begin{aligned}
 1 + 6 \times 1 + 6 \times 2 + 6 \times 3 + \dots + 6(n-1) &= \\
 1 + 6(1 + 2 + 3 + \dots + n-1) &= \\
 1 + 6 \left(\frac{n(n-1)}{2} \right) &= \\
 \boxed{1 + 3n(n-1)}
 \end{aligned}$$